564 research outputs found

    Unsupervised Domain Adaptation with Similarity Learning

    Full text link
    The objective of unsupervised domain adaptation is to leverage features from a labeled source domain and learn a classifier for an unlabeled target domain, with a similar but different data distribution. Most deep learning approaches to domain adaptation consist of two steps: (i) learn features that preserve a low risk on labeled samples (source domain) and (ii) make the features from both domains to be as indistinguishable as possible, so that a classifier trained on the source can also be applied on the target domain. In general, the classifiers in step (i) consist of fully-connected layers applied directly on the indistinguishable features learned in (ii). In this paper, we propose a different way to do the classification, using similarity learning. The proposed method learns a pairwise similarity function in which classification can be performed by computing similarity between prototype representations of each category. The domain-invariant features and the categorical prototype representations are learned jointly and in an end-to-end fashion. At inference time, images from the target domain are compared to the prototypes and the label associated with the one that best matches the image is outputed. The approach is simple, scalable and effective. We show that our model achieves state-of-the-art performance in different unsupervised domain adaptation scenarios

    From Image-level to Pixel-level Labeling with Convolutional Networks

    Get PDF
    We are interested in inferring object segmentation by leveraging only object class information, and by considering only minimal priors on the object segmentation task. This problem could be viewed as a kind of weakly supervised segmentation task, and naturally fits the Multiple Instance Learning (MIL) framework: every training image is known to have (or not) at least one pixel corresponding to the image class label, and the segmentation task can be rewritten as inferring the pixels belonging to the class of the object (given one image, and its object class). We propose a Convolutional Neural Network-based model, which is constrained during training to put more weight on pixels which are important for classifying the image. We show that at test time, the model has learned to discriminate the right pixels well enough, such that it performs very well on an existing segmentation benchmark, by adding only few smoothing priors. Our system is trained using a subset of the Imagenet dataset and the segmentation experiments are performed on the challenging Pascal VOC dataset (with no fine-tuning of the model on Pascal VOC). Our model beats the state of the art results in weakly supervised object segmentation task by a large margin. We also compare the performance of our model with state of the art fully-supervised segmentation approaches.Comment: CVPR201

    Recurrent Convolutional Neural Networks for Scene Parsing

    Get PDF
    Scene parsing is a technique that consist on giving a label to all pixels in an image according to the class they belong to. To ensure a good visual coherence and a high class accuracy, it is essential for a scene parser to capture image long range dependencies. In a feed-forward architecture, this can be simply achieved by considering a sufficiently large input context patch, around each pixel to be labeled. We propose an approach consisting of a recurrent convolutional neural network which allows us to consider a large input context, while limiting the capacity of the model. Contrary to most standard approaches, our method does not rely on any segmentation methods, nor any task-specific features. The system is trained in an end-to-end manner over raw pixels, and models complex spatial dependencies with low inference cost. As the context size increases with the built-in recurrence, the system identifies and corrects its own errors. Our approach yields state-of-the-art performance on both the Stanford Background Dataset and the SIFT Flow Dataset, while remaining very fast at test time

    Phrase-based Image Captioning

    Get PDF
    Generating a novel textual description of an image is an interesting problem that connects computer vision and natural language processing. In this paper, we present a simple model that is able to generate descriptive sentences given a sample image. This model has a strong focus on the syntax of the descriptions. We train a purely bilinear model that learns a metric between an image representation (generated from a previously trained Convolutional Neural Network) and phrases that are used to described them. The system is then able to infer phrases from a given image sample. Based on caption syntax statistics, we propose a simple language model that can produce relevant descriptions for a given test image using the phrases inferred. Our approach, which is considerably simpler than state-of-the-art models, achieves comparable results in two popular datasets for the task: Flickr30k and the recently proposed Microsoft COCO

    Object segmentation in depth maps with one user click and a synthetically trained fully convolutional network

    Get PDF
    With more and more household objects built on planned obsolescence and consumed by a fast-growing population, hazardous waste recycling has become a critical challenge. Given the large variability of household waste, current recycling platforms mostly rely on human operators to analyze the scene, typically composed of many object instances piled up in bulk. Helping them by robotizing the unitary extraction is a key challenge to speed up this tedious process. Whereas supervised deep learning has proven very efficient for such object-level scene understanding, e.g., generic object detection and segmentation in everyday scenes, it however requires large sets of per-pixel labeled images, that are hardly available for numerous application contexts, including industrial robotics. We thus propose a step towards a practical interactive application for generating an object-oriented robotic grasp, requiring as inputs only one depth map of the scene and one user click on the next object to extract. More precisely, we address in this paper the middle issue of object seg-mentation in top views of piles of bulk objects given a pixel location, namely seed, provided interactively by a human operator. We propose a twofold framework for generating edge-driven instance segments. First, we repurpose a state-of-the-art fully convolutional object contour detector for seed-based instance segmentation by introducing the notion of edge-mask duality with a novel patch-free and contour-oriented loss function. Second, we train one model using only synthetic scenes, instead of manually labeled training data. Our experimental results show that considering edge-mask duality for training an encoder-decoder network, as we suggest, outperforms a state-of-the-art patch-based network in the present application context.Comment: This is a pre-print of an article published in Human Friendly Robotics, 10th International Workshop, Springer Proceedings in Advanced Robotics, vol 7. The final authenticated version is available online at: https://doi.org/10.1007/978-3-319-89327-3\_16, Springer Proceedings in Advanced Robotics, Siciliano Bruno, Khatib Oussama, In press, Human Friendly Robotics, 10th International Workshop,
    • …
    corecore